Association between Dietary Inflammatory Index, Mean Adequacy Ratio, Dietary Energy Density and Mental Health among Iranian Women

Mohammad Vesal Bideshki¹,², Mohammad-Reza Jowshan³,⁴, Navid Sherafati⁵, Mehrdad Behzadi⁶, Sahar Nejatpoor⁵, Fatemeh Ahmadi⁵, Maryam Noashadi-Asl⁵, Samaneh Moradi-Sheybani⁵, Seyed Bahman Panahande⁵*

¹. Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
². Department of Biochemistry and Diet Therapy, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
³. Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
⁴. Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
⁵. Department of Nutrition, School of Health and Nutrition, Yasuj University of Medical Sciences, Yasuj, Iran
⁶. Student Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran

ARTICLE INFO

Keywords:
Dietary inflammatory index
Dietary energy density
Mental health
Depression
Anxiety

ABSTRACT

Background: Depression and anxiety are on the rise, especially among women. By its inflammatory characteristics and energy density, diet may affect the occurrence of mental disorders. This study investigated the relationship between the dietary inflammatory index (DII), mean adequacy ratio (MAR), dietary energy density (DED) and mental health.

Methods: This cross-sectional study was conducted on 202 women of reproductive age (18-50 years) referred to health centers in Yasuj, Iran. Participants were randomly sampled from these centers. We assessed diet through a 148-item food frequency questionnaire (FFQ). Then, DII, MAR, and DED scores were calculated for participants. Furthermore, the Hospital Anxiety and Depression Scale (HADS) questionnaire was used to assess anxiety and depression.

Results: No significant association was found between the DII, ED, MAR indexes and obesity, anxiety, or depression, even after adjusting for confounders (p>0.05). Additionally, there was no association between the number of pregnancies or children with anxiety and depression (p>0.05). Younger participants consumed foods with higher ED index (p<0.001). Higher weight and BMI were related to tertile 1 of ED (p=0.03 and p=0.003, respectively).

Conclusion: In the present study, no association was observed between DII, MAR, DED and mental health in women of reproductive age. However, further studies are needed to confirm these findings.

*Corresponding author:
Seyed Bahman Panahande, PhD, Department of Nutrition, School of Health and Nutrition, Yasuj University of Medical Sciences, Yasuj, Iran.
Tel: +98 9120281499
Email: panahande.b@gmail.com
Received: December 13, 2023
Revised: March 5, 2024
Accepted: March 15, 2024

Introduction

Depression and anxiety are mental health disorders that have an alarming rate of increasing prevalence in both developed and developing countries, and they also impose a heavy economic burden and disability on society (1). Based on World Health Organization (WHO) data, depressive and anxiety disorders annually cost the universal economy around 1 trillion dollars in lost productivity (2). Among Iranian people, the prevalence of depression and anxiety was estimated to be approximately three in ten (34.26%) and one in ten (15.6%), respectively (3). Likewise, some studies indicated that the pervasiveness of depression in the age range of 15 to 44 was more prevalent and higher among women (4).

Previous studies have investigated the association between risk factors such as an unhealthy diet and common mental health disorders (5, 6). Overall, diet plays a major role in regulating chronic inflammation. An unhealthy diet rich in fat and refined carbohydrates is associated with high levels of inflammatory factors, including C-reactive protein (CRP), and proinflammatory cytokines, such as tumor necrosis factor-alpha (TNFα) and interleukin-6 (IL-6) (7). Furthermore, a healthy diet that is rich in fruits and vegetables can prevent oxidative stress and inflammation (8). There are several tools to assess inflammation. One of the tools for experts to evaluate the inflammatory potential of the diet is the Dietary Inflammatory Index (DII), which is used to evaluate the inflammatory capacity of foods and diet (9). Notably, a previous study showed a J-shaped relationship between DII and depression (10).

Another scale that we investigated, which is a valid and novel indicator of the total quality of the diet, is Dietary Energy Density (DED), which has attracted a great deal of attention and is defined as the amount of energy in a unit of food or beverage weight (kcal/gram) (11). Various studies have found conflicting results regarding the use of DED for depression and anxiety (12, 13), while women were more often affected by problems with their eating behaviors, such as high energy intake, which can lead to a higher rate of mental health disorders (14). The mean adequacy ratio (MAR) is another indicator that represents the population’s overall nutritional adequacy and indicates various aspects of a healthy diet, including variety, moderation, and the specific intake ratio to the recommended amounts of nutrients according to current standards (15). Few studies have been performed on this index and its relationship to mental disorders, especially for women around the world (16, 17). Only a limited number of studies have examined the relationship between DII and depression (18-20). Although most of them revealed a positive relationship between the inflammatory index of the diet and the risk of depression, some of them did not find a significant relationship (19, 20). In a prospective study during 12 years, Adjibade et al. found that, unlike the male population, no association was visible in the female population (18). Depression risk has received the primarily attention, while anxiety and other mental health parameters have received less attraction (20). This study was undertaken to evaluate the association between dietary indexes with depression and anxiety in women of reproductive age.

Materials and Methods

A cross-sectional analytical study involving 202 women aged 18 to 50 was conducted to determine the association between dietary inflammatory index, MAR, dietary energy density and mental health. MAR, DII, and DED were measured as part of the study. Using a simple random sampling method from the health centers of Yasuj, Iran, the sample size was calculated by the formula of qualitative attributes (Z=1.96, P=15%, e=0.05) (21).

\[
n = \frac{z^2 \times p \times (1 - p)}{e^2}
\]

Exclusion criteria from this study were being pregnant or menopause, a high blood pressure, being an immigrant, suffering from cancer, diabetes, liver and kidney diseases, thyroid diseases, cardiovascular diseases, using drugs that affect weight and blood sugar and lipid levels, and receiving glucocorticoids.

Subjects were properly informed about the research objectives and methodology before enrollment. Participants were requested to complete a formal written consent form. The Yasuj University of Medical Sciences Ethical Board approved the investigation methodology in accordance with the Helsinki Declaration (IR.YUMS.REC.1399.119). The demographic questionnaire of our previous study was utilized to provide information about age, gender, weight, marital status, educational level, medical history, recent use of antidepressants, nutritional supplements, weight loss drugs, smoking history, and economical condition of participants (22).

Nutritional status was evaluated by the Food Frequency Questionnaire (FFQ), which has 148 items. In this questionnaire, the surveyed people were asked to specify the frequency of their consumption for each food item according to their annual consumption. Checking the validity of this questionnaire by past studies showed that FFQ had
acceptable validity and reliability (23). Nutritional intake was analyzed by “Nutritionist 4” software. After analyzing the questionnaires, if people’s intake was less than or more than 3 standard deviations (SD) of the average consumption for all participants (or more than 3500 or less than 500 calories), the person was excluded from the study (24).

To calculate the DII score, first the Z score was calculated by subtracting the global standard average from the actual food volume and thus dividing the difference by the international standard deviation. For each subject, we converted Z scores to central percentile scores that were multiplied by the effect of food parameter score to obtain the DII score. A larger score indicated a pro-inflammatory diet and a smaller score indicated an anti-inflammatory diet. This study used a 148-item semi-quantitative questionnaire, while some of the food items that needed calculation of the DII were not measured. Therefore, only 25 food items were enrolled to measure the DII. Nutrient adequacy was measured by computing the MAR. The following formula was used to determine MAR: The nutrient adequacy ratio (NAR) was used for 12 nutrients (vitamin A, calcium, iron, zinc, phosphorus, riboflavin, thiamine, vitamin C, magnesium, protein, potassium, and fat) and energy. The NAR was obtained by dividing the daily intake of the mentioned nutrients by the standard recommended amounts for the age and gender groups of people. The NAR was evaluated based on the estimated average requirements (EAR) for vitamins and minerals, and for those nutrients that EAR was not available, adequate intakes (AI) were used.

\[
MAR = \frac{\sum NAR}{\text{number of nutrients}}
\]

To assess DED, the reported daily energy intake of each person (d/kcal) was divided by the total weight of food consumed (g/d).

The Iranian version of the Hospital Anxiety and Depression Scale (HADS) questionnaire was used to assess anxiety and depression (25). This short and useful questionnaire evaluated psychological disorders and the severity of anxiety and depression symptoms. It included 14 items (7 questions related to the level of anxiety and 7 questions related to the level of depression), while a four-point scale (0, 1, 2 and 3) was considered for each item. Finally, from the total of 21 acquisition points in each part, the samples were categorized into low levels (score 0 to 7 revealing the person to be healthy), medium levels (score 8 to 10 showing an intermediate disorder; score 11 to 14 demonstrating a moderate disorder) and high levels (score 15 to 21 illustrating the suspected severe disorder). A score of 11 was considered the cutoff point, and scores higher than 11 were regarded to be clinically important.

Statistical analysis was conducted using SPSS software for Windows (version 23; SPSS, Chicago, IL, USA). For normal distributed continuous data, the mean and standard deviation (SD) were presented, and for non-normal distributed data, the median and interquartile range were displayed. Categorical items were shown as absolute values and frequencies (%). Subjects with DII, MAR, and DED were classified into tertile categories. To assess the variation in characteristics between tertiles, one-way analysis of variance (ANOVA) was employed as quantitative variables, and the χ2 test was performed for qualitative data. The Chi-squared test was applied to determine the prevalence of depression and anxiety according to the number of pregnancies and number of children. The level of significance was determined as p<0.05.

Two models were constructed using logistic regression to examine the association between DII, MAR and DED with obesity, depression and anxiety as model 1: Adjusted for energy intake (kcal/g) and age (years), and model 2: A change for smoking (Smoker/non-Smoker), number of pregnancies, economical status (low/average/high), owning house and car, marital status (single/married/divorced/widow), educational level (illiterate/under diploma/diploma/higher education), estrogen and multivitamin usage, and occupation (employed/housekeeper/unemployed). In this study, obesity was defined as BMI ≥30 kg/m² or waist circumference >88 cm for females (26). As a reference, the first tertiles of DII, MAR, and DED was used for both models. Also, DII, MAR and DED tertiles were considered as continuous variables to determine the P trend in binary logistic regression models.

Results

In the present study, 38.2% of the study participants were categorized as moderate and severe depressed ones (n=76). Additionally, 51.8% showed moderate and severe anxiety (n=103). The DED score ranged from 4.35 to 5.15, the DII score from -2.96 to 1.08, and the MAR score from 0.82 to 2.37. Table 1 presents the general characteristics of the study subjects in the tertiles of DED, DII, and MAR scores. Compared with those in the lower tertile, participants in the upper tertile of DED score were younger and with lower BMI and weight levels. The marital status, occupation, and number of pregnancies were significantly associated with the DED score. The MAR score also exhibited a significant relationship with being a home owner.
<table>
<thead>
<tr>
<th>(n)</th>
<th>Energy density</th>
<th>DII</th>
<th>MAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1 (67)</td>
<td>T2 (69)</td>
<td>T3 (67)</td>
</tr>
<tr>
<td>Age (y)</td>
<td>32.3±8.77</td>
<td>25.7±8.41</td>
<td>24.1±8.79</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>163±5.36</td>
<td>163±5.41</td>
<td>164±4.77</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>71.4±12.1</td>
<td>67.4±13.6</td>
<td>65.5±13.5</td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>26.9±4.11</td>
<td>25.3±4.43</td>
<td>24.3±4.65</td>
</tr>
<tr>
<td>Anxiety and depression</td>
<td>14.1±7.09</td>
<td>14.6±6.69</td>
<td>15±7.3</td>
</tr>
<tr>
<td>Age (y)</td>
<td>32.3±8.77</td>
<td>25.7±8.41</td>
<td>24.1±8.79</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>163±5.36</td>
<td>163±5.41</td>
<td>164±4.77</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>71.4±12.1</td>
<td>67.4±13.6</td>
<td>65.5±13.5</td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>26.9±4.11</td>
<td>25.3±4.43</td>
<td>24.3±4.65</td>
</tr>
<tr>
<td>Anxiety and depression</td>
<td>14.1±7.09</td>
<td>14.6±6.69</td>
<td>15±7.3</td>
</tr>
<tr>
<td>Age (y)</td>
<td>32.3±8.77</td>
<td>25.7±8.41</td>
<td>24.1±8.79</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>163±5.36</td>
<td>163±5.41</td>
<td>164±4.77</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>71.4±12.1</td>
<td>67.4±13.6</td>
<td>65.5±13.5</td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>26.9±4.11</td>
<td>25.3±4.43</td>
<td>24.3±4.65</td>
</tr>
<tr>
<td>Anxiety and depression</td>
<td>14.1±7.09</td>
<td>14.6±6.69</td>
<td>15±7.3</td>
</tr>
</tbody>
</table>

Table 1: General characteristics of the participants across tertiles of energy density, dietary inflammatory index, and mean adequacy ratio.
In addition to the score tertile, no significant difference was noticed for other variables. Crude and multivariate-adjusted odds ratios (ORs) and 95% CIs for obesity, depression, and anxiety across tertile of DII score were presented in Table 2. In a full adjusted model, participants in the highest tertiles of DII scores demonstrated a lower odds ratio of obesity (OR: 0.36; 95% CI: 0.1–1.31), depression (OR: 1.39; 95% CI: 0.15–12.6), and anxiety (OR: 0.84; 95% CI: 0.28–2.56) when compared to those in the lowest tertile. However, this association was not statistically significant. Additionally, in the crude model or the first adjusted model (for energy intake and age), no significant association was found.

Crude and multivariate-adjusted odds ratios and 95% CIs for obesity, depression, and anxiety across tertiles of MAR score were presented in Table 3. In a full adjusted model, participants in the highest tertile of the MAR score showed higher odds of obesity (OR: 3.98; 95% CI: 0.73–21.8) and lower odds of depression (OR: 0.83; 95% CI: 0.08–10.1) and anxiety (OR: 0.25; 95% CI: 0.05-1.12), in comparison to those in the lowest tertile; however, this association was not significant. In the crude model or the first adjusted model (for energy intake and age), no significant association was seen. Crude and multivariate-adjusted odds ratios and 95% CIs for obesity, depression, and anxiety across tertiles of DED score were presented in Table 4. In a full adjusted model, participants in the highest percentile of DED scores illustrated higher odds of obesity (OR: 2.04; 95% CI: 0.67–6.26), depression (OR: 1.64; 95% CI: 0.29–9.19), and anxiety (OR: 1.03; 95% CI: 0.4–0.66) when compared to those in the lowest tertile; even this association was not significant. In the crude model or the first adjusted model (for energy intake and age), no significant association was found too.

Discussion

This cross-sectional study investigated the relationship between the DII, MAR, DED and mental health. ED showed the correlation with age; while younger participants consumed foods with a higher ED index. ED demonstrated a correlation with weight and BMI too, while higher weight levels and BMI displayed association to T1 of ED. The number of pregnancies was significantly associated with the DED score. Despite adjusting for confounding factors, the DII, ED, and MAR indexes revealed no significant association with obesity, anxiety, or depression. In line with our results, two studies indicated that ED values were inversely associated with age (27, 28). However, more studies are necessary to find out the potential impacts of misreporting on estimated ED values.
If individuals consistently under-reported or over-reported all types of foods, there would likely be little influence on energy density values. Also, under-reporting high-energy-dense foods or over-reporting low-energy-dense foods could cause energy density estimations to be lower than actual values and could mask associations with health outcomes. This may be especially problematic among individuals who were older (29). A number of cross-sectional and cohort studies have revealed a direct causal link between DII and mental disorders like anxiety and depression (30, 31).

According to findings of several studies, women with a high DII score were more likely to experience depressive symptoms and anxiety (31-33). Nevertheless, one large prospective study in 2017 did not observe any significant association within any specific age subgroup among women (18). Therefore, we designed our study on women to investigate this relationship. The DII was shown to be a better predictor of depression in older people (2). Our participants were younger than the study population of previous studies (30-32), which may explain the differences between our results and the others. In line with our findings, Maddahi et al. observed no significant association between ED and anxiety or depression (11).

In a study by Grossniklaus et al. on adults, increased depressive symptoms were related to increased food and beverage energy density (13).
Additionally, Atlantis et al. did not find any association between ED and depression in their study on Australian men (34). Diets with high energy density and rich in fat (11) in Dutheil et al.’s study revealed high-fat diets to be associated with higher anxiety levels via disrupting insulin signaling and increasing inflammatory cytokines and corticosterone level (35). Some studies have shown that low diet quality is a serious risk factor for depression. These studies states that the diet of depressed people had low quality and its contents were poor in terms of protein, vitamins, and minerals and rich in simple carbohydrates and saturated fat (36, 37). The newest study showed that MAR score was significantly higher in individuals without depressive symptoms (15). Additionally, one study demonstrated this relationship only in women (16).

Our study has some potential limitations that should be noted. The first weakness of our study was the sample size, which was too small. Additionally, we used the FFQ to determine the participants’ usual diet and then calculated dietary indexes. The limitations of the FFQ were linked to a fixed list of foods and the conceptual abilities related to the recall of the frequency and amount of food intake patterns during an extended period. As with other methods based on interviews, they can also be subjected to interviewer bias. It is important to acknowledge that the DII had some restrictions; for instance, the DII was primarily based on literature evaluating the effect of specific dietary components on inflammation, which might result in a less significant association when comparing it to the diet (31). The study also had several strengths. The samples in this study were more specific than in previous surveys, while we investigated on a specific women population. Additionally, we used a 148-item FFQ that was more complete and covered more DII items. Besides, we adjusted our results for several confounders, such as smoking, number of pregnancies, economical status, owning a house or a car, marital status, educational level, intake of estrogen and multivitamin, and occupation.

Conclusion

Our results revealed no association between dietary indexes and obesity, anxiety and depression even after adjusting for confounders. According to the differences in the findings of recent studies, more investigations utilizing a prospective design with a greater sample size are needed. Moreover, future randomized controlled trials are necessary to clarify the relationship between DII and mental disorders. Although individuals in the highest tertile of DED score had a lower BMI and weight and were younger, we did not observe any other significant differences in other variables, such as depression, anxiety, and obesity. Further
larger scale prospective cohort studies with low measurement errors seem necessary to confirm the current findings.

Acknowledgment

The authors appreciate the Vice-Chancellor Yasuj University of Medical Sciences for their financial support. The researchers also extend their sincerest appreciation to all subjects, who served as samples of this study.

Authors’ Contribution

Conception and Design: M.R.J., M. V.B., S.B.P., Acquisition of Data: S.N., F.A., M.N.A, S.M.S. Analysis and Interpretation of Data: M.R.J., S.B.P. Drafting the Manuscript: M.R.J., M.B., N.S., M. V.B. Revising Manuscript for Intellectual Content: M.R.J., M.V.B. All authors have read and approved the final manuscript.

Conflict of Interest

The authors report that there are no competing interests to declare.

References

17. Kang M, Joo M, Hong H, et al. The Relationship...

26 Purnell JQ. Definitions, Classification, and Epidemiology of Obesity: MDText.com, Inc., South Dartmouth (MA); 2015. PMID: 25905390.

