International Journal of Nutrition Sciences

Journal Home Page: ijns.sums.ac.ir

REVIEW ARTICLE

The Effectiveness of Stevia in Diabetes Mellitus: A Review

Seyed Jalil Masoumi¹, Sara Ranjbar²*, Vida Keshavarz³

1. Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

2. Student Research Committee, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran 3. Nutrition Association, Shiraz University of Medical Sciences, Shiraz, Iran

ARTICLE INFO

ABSTRACT

Keywords: Stevia Diabetes mellitus Fasting blood glucose HbA1c Weight

*Corresponding author: Sara Ranjbar, Student Research Committee, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran. **Tel:** +98-9366354573 **Email:** s.ranjbar9473@gmail.com **Received:** December 10, 2019 **Revised:** March 25, 2020 **Accepted:** April 4, 2020 Stevia is a sweet calorie-free plant used in food industry as a sweetener in beverages and foods. Lots of studies have been done on its efficacy, including its effects on weight, blood glucose, lipid profile, inflammation, etc. Recently, this plant has attracted diabetics, due to its low calorie sweetness. Diabetes is a chronic metabolic disease with an increasing prevalence, that the government and patients spend a great deal of money on treatment each year. Therefore, in this study, we aimed to investigate the effects of stevia supplementation in diabetic patients. Studies have shown that only a few studies have been conducted on diabetic patients, while many animal studies are available. Our review of these studies showed that stevia is a safe herb for diabetics and may have therapeutic effects, if used at a pharmacological dose, although more detailed studies are needed.

Please cite this article as: Masoumi SJ, Ranjbar S, Keshavarz V. The Effectiveness of Stevia in Diabetes Mellitus: A Review. Int J Nutr Sci. 2020;5(2):45-49. doi: 10.30476/IJNS.2020.85311.1056.

Introduction

Diabetes is the most common cause of blindness and the most important cause of chronic renal failure (1). It is known as the most important cause of amputation in the world (2). Diabetes is a metabolic disorder mainly caused by insulin deficiency or dysfunction that results in hyperglycemic condition. Increased blood glucose in this disease for a long time causes many disorders such as heart disease, stroke, neuropathy, retinopathy, and renal problems (3). It was shown that insulin resistance is the most important factor in promoting type two diabetes mellitus (T2DM). It is strongly linked to diet, obesity, especially abdominal obesity and physical activity (4).

Lifestyle modification with proper diet, weight

loss in overweight and obese patients and regular physical activity are the most important principles in managing diabetes (5). To improve glycemic status glucose lowering medications are used such as metformin, biguanides, thiazolidinediones, and also insulin (6). In recent years, herbal remedies have attracted much attention. Some herbal drugs became popular because of low side effects in comparison to chemical drugs (7). Researchers investigated a lot of studies in recent decades about the effect of different herbs on diabetes. Stevia is also one of the herbs that a large number of studies have been done to investigate its effectiveness on different issues (8).

Stevia rebaudiana belongs to the family *Asteraceae*. It is native to the northeast of Paraguay, but is cultivated in other regions around the world like

Europe, Asia, and North America. Stevia is famous because of its high sweetness which is about 250-300 times more than sucrose. Its sweet taste is related to the steviol glycosides that are commonly used as non-caloric sweeteners and substitutes for sugar. The Joint Expert Committee on Food Additives (JECFA) has established the accepted daily intake of purified steviol glycosides extracts which is 4 mg/kg/day (9).

Also, the European Food Safety Authority (EFSA) declared the safety of purified steviol glycosides to be used in food and beverages as a sweetener or additive. Further to stevia sweetness, it contains other components that have therapeutic properties including flavonoids and phenolic components (9). Considering the importance of diabetes and the beneficial effects of the stevia, as stated in various studies, we decided to investigate the effect of stevia on diabetes.

The Effect of Stevia on Glycemic Profile

Few clinical trial studies investigated the effect of stevia in diabetes (10-12), while most of the studies in this subject are conducted on animal models (13-16). Some of the studies are in Table 1. In human studies (10, 12), stevia consumption had no significant effect on HbA_{1c} (hemoglobin A1c), FBS (fasting blood sugar) levels, while animal studies indicate the effectiveness of stevia on FBS and insulin status (13, 17-19). This may be due to the use of the whole extract of stevia (20, 21) that contains other compounds like polyphenols and also using stevioside at higher doses (17), whereas human studies used stevioside in allowed limited doses (10, 12). Moreover, some studies have also demonstrated the beneficial effects

of stevia on postprandial glucose (11, 22).

The Effect of Stevia on Calorie Intake and Weight

Obesity especially abdominal obesity is the most important risk factor in diabetes mellitus that can cause insulin resistance (4). On the other hand, weight loss is associated with improved glycemic profile. Therefore, considering the importance of weight loss, calorie and sugar restriction using products that are sweet, but low in calories and sugar is important for diabetic patients (23). Stevia along with sweet, but calorie-free flavors has shown beneficial effects on food intake and weight loss. Although two human (22, 24) and animal studies (25) have illustrated such effects; there are also several clinical trials that have not found a significant effect on BMI (26-28) (Table 2).

The Effect of Stevia on Lipid Profile

Animal studies indicated the decreasing effect of stevia on triglyceride (29). However, the effect of stevia on cholesterol level is contradictory (30). Among the investigated clinical trials, stevioside had no reducing effect on lipid profile in diabetic and healthy people (10, 27). In one study, 1g/day stevia consumption for 60 days in diabetic patients led to reduced levels of cholesterol, triglyceride, and LDLcholesterol (31). Animal and cellular studies are in favor of stevia anti-lipid effects. They have reported increased levels of carnitine palmitoyl transferase-I and PPAR α mRNA by daily administrating stevia extract. Also, reduced levels of acetyl-COA carboxylase mRNA in stevia supplemented rats might lead to lower fatty acid synthesis (32) (Table 3).

Table 1: Stevia and glycemic profile							
Author/Year	Subjects	Study	Intervention	Outcome			
T		duration	<u>Ct</u>				
Jeppesen et al.,	T2DM in men and	3 months	Stevioside	No significant result in glucose,			
2006 (12)	women		(1500 mg/day)	HbA _{1c} , TG			
				Reduced cholesterol			
Barriocanal et	Men and women	3 months	Stevioside	No significant result in BMI,			
al., 2008 (10)	with or without		(750 mg/day)	glucose, HbA _{1c} , TG, cholesterol,			
	T1DM or T2DM			and LDL			
Gregersen et al.,	Overweight and	4 hours	Stevioside	Reduced postprandial blood			
2004 (11)	obese men and		(1000 mg)	glucose			
	women with T2DM						
Bayat et al., 2017	Diabetic male Wistar rats	1 month	Stevia extract	Reduced FBS and IL-6			
(18)			(400 mg/kg/day)				
Saleh et al., 2016	Diabetic male Wistar rats	1 month	Stevioside (300	Reduced FBS, oxidative stress,			
(17)			mg/kg/day)	cholesterol, TG			
× /				Increased insulin, HDL			
Scaria et al., 2017	Diabetic nephropathy	28 days	stevioside	Reduced FBS, TG, cholesterol,			
(13)	rats	2	(250 mg/kg/day)	oxidative stress			

T1DM: type 1 diabetes mellitus, T2DM: type 2 diabetes mellitus, HbA_{1c}: hemoglobin A1c, TG: triglyceride, LDL: lowdensity lipoprotein, FBS: fasting blood sugar, HDL: high-density lipoprotein; IL: Interleukin, BMI: body mass index

Table 2: Stevia and calorie intake and weight							
Author/Year	Subjects	Study duration	Intervention	Outcome			
Anton et al., 2010 (22)	Healthy and obese men and women	3 days	A 400 g preload of tea and crackers with cream cheese sweetened with stevia	Feeling satiety, Reduced postprandial blood glucose and insulin levels			
Duram Aguero et al., 2015 (24)	Students	1 week	Consuming food and beverages containing stevia as sweetener	Associated with normal weight and nutritional status			
Ahmad et al., 2018 (25)	Hyperlipidemic rats	8 weeks	Aqueous stevia (200, 300, 400, 500 ppm/ kg)	Significantly reduced food intake and weight gain			
Chan et al., 2000 (26)	Hypertensive men and women	1 year	Stevioside (750 mg)	Blood pressure decreased, no changes in blood lipid and glucose			
Maki et al., 2008 (28)	Men and women with T2DM	16 weeks	Rebaudioside (1000 mg)	No significant changes in glucose hemostasis or blood pressure			

T2DM: type 2 diabetes mellitus

Table 3: Stevia and lipid profile						
Author/Year	Subjects	Study duration	Intervention	Outcome		
Barriocanal et al.,	Men and women	3 months	Stevioside	No significant		
2008 (10)	with or without		(750 mg/day)	result in BMI,		
	T1DM or T2DM			glucose, HbA _{1c} , TG,		
				cholesterol, and LDL		
Silva et al., 2006 (27)	Hyperlipidemic men	90 days	Stevioside	No significant result		
	and women		(200 mg)	in TG, VLDL, HDL,		
				LDL and glucose		
Ritu and Nandini,	Men and women with	3 days	Stevia (1 g)	Significant reduction		
2016 (31)	T2DM			in TG and VLDL		
Park and Cha, 2010	Mice with normal or	15 weeks	Stevia	Reduced weight gain,		
(32)	high fat diet		(1 mL/kg/day)	TG, and cholesterol		

T1DM: type 1 diabetes mellitus, T2DM: type 2 diabetes mellitus, BMI: body mass index, HbA_{1e}: hemoglobin A1c, TG: triglyceride, LDL: low-density lipoprotein, VLDL: very low-density lipoprotein, HDL: high-density lipoprotein

Conclusion

Studies show that stevia at high doses can be desirable and therapeutic in diabetic patients while at doses authorized as a sweetener has no significant effects on glucose and lipid markers. Although there have been limited human studies in this area, it is suggested that, to better conclude the effects of stevia on diabetes, researchers conduct further studies with higher sample sizes.

Conflict of Interest

None declared.

References

- 1 Shahriari S, Hejazi N, Eftekhari MH. The role of camel milk in treatment of type 2 diabetes: A review. *Int J Nutr Sci.* 2018;3:120-126.
- 2 Ridwanto M, Indarto D, Hanim D. Factors affecting fasting blood glucose in patients with

type 2 diabetes mellitus. *Int J Nutr Sci.* 2020;5:13-18. DOI:10.30476/IJNS.2020.84492.1048.

- 3 Shahriari S, Eftekhari MH, Jeddi M. The effect of vitamin D supplementation in overweight or obese type 2 diabetic patients with vitamin D deficiency and dyslipidemia. *Int J Nutr Sci.* 2018;3:185-91.
- 4 Hosseini SE, Rezaei E, Mehrabani D, et al. Effect of pomegranate juice on lipid profile in streptozotocin-induced diabetic adult male rats. *J Exp Anim Biol.* 2013;2:13-20.
- 5 Ismawanti Z, Suparyatmo JB, Wiboworini B. The effects of papaya fruit as anti diabetes type 2: A review. *Int J Nutr Sci.* 2019;4:65-70. DOI:10.30476/IJNS.2019.81751.1013.
- 6 Maayeshi N, Mousavi SM, Ranjbaran H, et al. The relationship between nutritional knowledge and food habits and some cardiometabolic risk factors in patients with diabetes in Shiraz, Iran.

Int J Nutr Sci. 2019;4:36-42. DOI:10.30476/ IJNS.2019.81733.1012.

- 7 Noviati TD, Tamtomo DG, Sugiarto S. The effect of purple sweet potato jelly on malondialdehyde and fasting blood sugar in experimental type 2 diabetic rat model. *Int J Nutr Sci.* 2019;4:181-5. DOI:10.30476/IJNS.2019.83872.1038.
- 8 Putri MD, Wiboworini B, Dirgahayu P. The effect of strawberry on type 2 diabetes mellitus: A review. *Int J Nutr Sci.* 2020;5:1-6. DOI:10.30476/ IJNS.2020.84050.1041.
- 9 Ranjbar T, Masoumi SJ. The effect of stevia rebaudiana on nonalcoholic fatty liver disease (NAFLD): A review. *Int J Nutr Sci.* 2018;3:2-6.
- Barriocanal LA, Palacios M, Benitez G, et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. *Regul Toxicol Pharmacol.* 2008;51:37-41. DOI:10.1016/j. yrtph.2008.02.006. PMID:18397817.
- 11 Gregersen S, Jeppesen PB, Holst JJ, et al. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. *Metabolism*. 2004;53:73-6. DOI:10.1016/j.metabol.2003.07.013. PMID:14681845.
- 12 Jeppesen P, Barriocanal L, Meyer M, et al., editors. Efficacy and tolerability of oral stevioside in patients with type 2 diabetes: a long-term, randomized, double-blinded, placebo-controlled study. Diabetologia: springer 233 spring street, New York, NY 10013 USA; 2006.
- 13 Scaria A, Kamath JV, Chakraborty M. Anti Hyperglycemic, Anti Oxidant, Anti Hyperlipidemic & Nephroprotective Effect of Stevioside in Diabetic Rats. *Int J Ayurved Med.* 2017;8.
- 14 Assaei R, Mokarram P, Dastghaib S, et al. Hypoglycemic Effect of Aquatic Extract of Stevia in Pancreas of Diabetic Rats: PPARgammadependent Regulation or Antioxidant Potential. *Avicenna J Med Biotechnol.* 2016;8:65-74. PMID:27141265.
- 15 Singh S, Garg V, Yadav D. Antihyperglycemic and antioxidative ability of Stevia rebaudiana (Bertoni) leaves in diabetes induced mice. *Int J Pharm PharmaceuticSci.* 2013;5:297-302.
- 16 Shivanna N, Naika M, Khanum F, et al. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complications. 2013;27:103-13. DOI:10.1016/j. jdiacomp.2012.10.001. PMID:23140911.
- 17 Saleh OM, Awad NS, Soliman MM, et al. Insulinmimetic activity of stevioside on diabetic rats:

biochemical, molecular and histopathological study. *Afr J Tradit Complement Alternat Med.* 2016;13:156-63. DOI:10.4314/ajtcam.v13i2.19.

- 18 Bayat E, Dastgheib S, Egdar S, Mokarram P. Effect of the Aquatic Extract of Stevia on the Serum Level of Interleukin-6 in Streptozotocin-Nicotinamide Induced Diabetic Rats. *Shiraz E-Med J.* 2017;18. DOI:10.17795/semj45015.
- 19 Philippaert K, Pironet A, Mesuere M, et al. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. *Nat Commun.* 2017;8:14733. DOI:10.1038/ncomms14733. PMID:28361903.
- 20 Akbarzadeh S, Eskandari F, Tangestani H, et al. The effect of Stevia rebaudiana on serum omentin and visfatin level in STZ-induced diabetic rats. *J Diet Suppl.* 2015;12:11-22. DOI:10.3109/19390 211.2014.901999. PMID:24689449.
- 21 Shivanna N, Naika M, Khanum F, et al. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. *J Diabetes Complications*. 2013;27:103-13. DOI:10.1016/j. jdiacomp.2012.10.001. PMID:23140911.
- 22 Anton SD, Martin CK, Han H, et al. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. *Appetite*. 2010;55:37-43. DOI:10.1016/j. appet.1010.03.009. PMID:20303371.
- 23 Mahan LK, Raymond JL. Krause's Food & the Nutrition Care Process-E-Book: Elsevier Health Sciences; 2016.
- 24 Duran Aguero S, Vasquez Leiva A, Morales Illanes G, et al. Association between stevia sweetener consumption and nutritional status in university students. *Nutr Hosp.* 2015;32:362-6. DOI:10.3305/nh.2015.32.1.8961. PMID:26262739.
- 25 Ahmad U, Ahmad RS, Arshad MS, et al. Antihyperlipidemic efficacy of aqueous extract of Stevia rebaudiana Bertoni in albino rats. *Lipids Health Dis.* 2018;17:175. DOI:10.1186/ s12944-018-0810-9. PMID:30053819.
- 26 Chan P, Tomlinson B, Chen YJ, et al. A doubleblind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. *Br J Clin Pharmacol.* 2000;50:215-20. DOI:10.1046/j.1365-2125.2000.00260.x. PMID:10971305.
- 27 Silva GECd, Assef AH, Albino CC, et al. Investigation of the tolerability of oral stevioside in Brazilian hyperlipidemic patients. *Braz Arch Biol Technol.* 2006;49:583-7. DOI:10.1590/ s15166000500007.
- 28 Maki KC, Curry LL, Reeves MS, et al. Chronic consumption of rebaudioside A, a steviol glycoside, in men and women with type 2 diabetes

mellitus. *Food Chem Toxicol*. 2008;46:S47-53. DOI:10.1016/j.fct.2008.05.007. PMID:18555575.

- 29 Aghajanyan A, Movsisyan Z, Trchounian A. Antihyperglycemic and Antihyperlipidemic Activity of Hydroponic Stevia rebaudiana Aqueous Extract in Hyperglycemia Induced by Immobilization Stress in Rabbits. *Biomed Res Int.* 2017;2017:9251358. DOI:10.1155/2017/9251358. PMID:28758125.
- 30 Onakpoya IJ, Heneghan CJ. Effect of the natural sweetener, steviol glycoside, on cardiovascular risk factors: A systematic review and meta-analysis of randomised clinical

trials. *Eur J Prev Cardiol*. 2015;22:1575-87. DOI:10.1177/204748314560663. PMID:25412840.

- 31 Ritu M, Nandini J. Nutritional composition of Stevia rebaudiana, a sweet herb, and its hypoglycaemic and hypolipidaemic effect on patients with non-insulin dependent diabetes mellitus. J Sci Food Agric. 2016;96:4231-4. DOI:10.1002/jsfa.7627. PMID:26781312.
- 32 Park JE, Cha YS. Stevia rebaudiana Bertoni extract supplementation improves lipid and carnitine profiles in C57BL/6J mice fed a highfat diet. J Sci Food Agric. 2010;90:1099-105. DOI:10.1002/jsfa.3906. PMID:20393989.