The Effect of Lactose, Protein and Zinc on Biotechnological Characteristics of Cheese Whey Using Kluyveromyces Yeasts

Document Type : Original Article

Authors

1 Department of Biology and Bioengineering, Institute of Natural Science, Volgograd State University, Volgograd, Russia

2 Department of Animal Resources, College of Agriculture, University of Kirkuk, Kirkuk, Iraq

3 Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, University of Kirkuk, Kirkuk, Iraq

10.30476/ijns.2025.106350.1439

Abstract

Background: In the last decade, the volume of cheese and cheese-based production has been growing steadily. This study aimed to determine the effect of lactose, protein and zinc on biotechnological characteristics of cheese whey using Kluyveromyces yeast.
Methods: The yeast strains Kluyveromyces lactis Y-2037, Y-2035 and Kluyveromyces marxianus Y-2042 were cultivated using a laboratory fermenter and orbital shaker thermostat for 72 hours at 34°C. To assess the differences related to whey composition, we changed the concentration of lactose, protein or zinc ions. Main characteristics of the investigations were yeast growth rate, lactose processing, ethanol production and fermentation efficiency.
Results: Yeast strains converted lactose from 82.7% to 89.9% and produced ethanol from 17.1 to 20.9 g-1 L-1 with a fermentation efficiency of 74.9-91.6%. The substrate feeding increased the lactose processing and ethanol production by 1.58-1.66 and 1.44-1.54 times, respectively. With a high initial lactose concentration in whey, an improvement
in bioconversion rates, and ethanol production were observed with an increase by 1.87-2.02 times.
Conclusion: Cultivation in a low-protein environment as shown to worsen the biotechnological characteristics of fermentation. High concentrations of zinc ions contributed to an increase in the efficiency of the lactose conversion to ethanol too; while the percentage of processed lactose increased by 3.1-5.1%, and fermentation efficiency increased to 14.5%. ‎

Highlights

Kais Sattwan Abbas (Google Scholar)

Kasim Sakran Abass (Google Scholar)

Keywords


  1. Zheng X, Shi X, Wang B. A review on the general cheese processing technology, flavor biochemical pathways and the influence of yeasts in cheese. Front Microbiol. 2021:12:703284. DOI: 10.3389/fmicb.2021.703284.
  2. Surai NM, Panasenko SV. Analysis of the current state of the global cheese market and determination of its development prospects. Economics Agric Russia. 2024;2:128-135. DOI: 10.32651/242-128. (In Russian)
  3. Buchanan D, Martindale W, Romeih E, et al. Recent advances in whey processing and valorisation: technological and environmental perspectives. Int J Dairy Technol. 2023;76:291-312. DOI: 10.1111/1471-0307.12935
  4. Bušić A, Mardetko N, Kundas S, et al. Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technolol Biotechnol. 2018;56:289-311. DOI: 10.17113/ftb.56.03.18.5546. PMID: 30510474.
  5. Okamoto K, Nakagawa S, Kanawaku R, et al. Ethanol production from cheese whey and expired milk by the brown rot fungus Neolentinus lepideus. 2019;5:e49. DOI: 10.3390/fermentation5020049
  6. Varela JA, Puricelli M, Ortiz-Merino RA, et al. Origin of lactose fermentation in Kluyveromyces lactis by interspecies transfer of a neo-functionalized gene cluster during domestication. Current Biol. 2019;29:4284-4290. DOI: 10.1016/j.cub.2019.10.044
  7. Adegboye MF, Ojuederie OB, Talia PM, et al. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. Biotechnol Biofuels. 2021;14:5. DOI: 10.1186/s13068-020-01853-2. PMID: 33407786.
  8. Papademas P, Kotsaki P. Technological utilization of whey towards sustainable exploitation. Adv Dairy Res. 2019;7:e231. DOI: 35248/2329-888X.19.7.231
  9. Zimina YA, Postnova MV, Abbas KS, et al. Promising renewable raw for ethanol biosynthesis. Eur J Mol Biotechnol. 2020;8:42-51. DOI: 10.13187/ejmb.2020.1.42.
  10. Zandona E, Blažić M, Režek Jambrak A. Whey utilization: sustainable uses and environmental approach. Food Technol Biotechnol. 2021;59:147-161. DOI: 10.17113/ftb.59.02.21.6968. PMID: 34316276.
  11. Osorio-González, C.S., Gómez-Falcon, N., Brar, S.K., & Ramírez, A.A. (2022). Cheese whey as a potential feedstock for producing renewable biofuels: A review. Energies,15, 6828. DOI:10.3390/en15186828   
  12. Karim A, Gerliani N, Aïder M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. Int J Food Microbiol.2020;333: DOI:10.1016/j.ijfoodmicro.2020.108818.  PMID: 32805574.
  13. Lyutova LV, Naumov GI, Shnyreva AV, et al. Molecular polymorphism of β-galactosidase LAC4 genes in dairy and natural strains of Kluyveromyces Mol Biol(Moscow). 2021;55:75-85. DOI: 10.31857/S0026898421010109. PMID: 33566027.
  14. Mo W, Wang M, Zhan R, et al. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnol Biofuels. 2019;12:63-72. DOI: 10.1186/s13068-019-1393-z. PMID: 30949239.
  15. Karim A, Gerliani N, Aïder M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. IntJ Food  2020;333:108818. DOI:10.1016/j.ijfoodmicro.2020.108818. PMID: 32805574. 
  16. Vu HH, Jin C, Chang JH. Structural basis for substrate recognition of glucose-6-phosphate dehydrogenase from Kluyveromyces lactis. Biochem Biophys Res Commun. 2021;553:85-91. DOI: 1016/j.bbrc.2021.02.088. PMID: 33765558.
  17. Feng CT, Du X, Wee J. Microbial and chemical analysis of non-Saccharomyces yeasts from Chambourcin hybrid grapes for potential use in winemaking. 2021;7:15. DOI: 10.3390/fermentation7010015.
  18. Koushki M, Jafari M, Azizi M. Comparison of ethanol production from cheese whey permeate by two yeast strains. J Food Sci Technol. 2012;49:614-619. DOI: 10.1007/s13197-011-0309-0. PMID: 24082274.
  19. Masoumi SJ, Mehrabani D, Saberifiroozi M, et al. The effect of yogurt fortified with Lactobacillus acidophilus and Bifidobacterium sp. probiotic in patients with lactose intolerance. Food Sci Nutr. 2021;9:1704-11. DOI: 1002/fsn3.2145. PMID: 33747481.
  20. Mehrabani D, Masoumi SJ, Masoumi AS, et al. Role of diet in mesenchymal stem cells’ function: a review. Int J Nutr Sci. 2023;8:9-19. DOI: 10.30476/ijns.2023.97788.1221.
  21. Mehrabani D, Vahedi M, Eftekhari MH, et al. Food avoidance in patients with ulcerative colitis: a review. Int J Nutr Sci. 2018;2:189-95.
  22. Sampaio FC, de Faria JT, da Silva MF, et al. Cheese whey permeate fermentation by Kluyveromyces lactis: A combined approach to wastewater treatment and bioethanol production. Environ Technol.2020;41:3210-3218. DOI:10.1080/09593330.2019.1604813. PMID: 30955482.
  23. Bilal M, Ji L, Xu Y, et al. Bioprospecting Kluyveromyces marxianus as a robust host for industrial biotechnology. Front Bioeng Biotechnol. 2022;10:851768. DOI: 10.3389/fbioe.2022.851768. PMID: 35519613.
  24. Ohstrom AM, Buck AE, Du X, et al. Evaluation of Kluyveromyces for conversion of lactose in different types of whey from dairy processing waste into ethanol. Front Microbiol. 2023;14:1208284. DOI: 10.3389/fmicb.2023.1208284. PMID: 37614608.
  25. Chepel N, Grek O, Krasulya O. Study of lactose–fermenting yeasts Kluyveromyces lactis for whey and apple pectin mixture fermentation. Eastern-European J Enterprise Technol. 2016;1:58-64. DOI: 15587/1729-4061.2016.59692.
  26. Zhou X, Hua X, Huang L, Xu Y. Bio-utilization of cheese manufacturing wastes (cheese whey powder) for bioethanol and specific product (galactonic acid) production via a two-step bioprocess. Bioresour Technol. 2019;272:70-76. DOI: 10.1016/j.biortech.2018.10.001. PMID: 30312870.
  27. Marcus JF, DeMarsh TA, Alcaine SD. Upcycling of whey permeate through yeast-and Mold-driven fermentations under anoxic and Oxic conditions. 2021;7:e16. DOI: 10.3390/fermentation7010016.
  28. Tesfaw A. The current trends of bioethanol production from cheese whey using yeasts: biological and economical perspectives. Front Energy Res. 2023;11:e11. DOI: 10.3389/fenrg.2023.1183035/full.
  29. Rocha-Mendoza D, Kosmerl E, Krentz A, et al. Invited review: acid whey trends and health benefits. J Dairy Sci. 2021;104:1262-1275. DOI: 10.3168/jds.2020-19038. PMID: 33358165.
  30. Das B, Das M, Bhattacharjee S, et al. Ethanol production from deproteinized cheese whey powder in a batch fermentation process: optimization of process and kinetic modelling. Desalination Water Treatment. 2017;64:198-206. DOI: 10.5004/dwt.2017.20238
  31. Postaru M, Tucaliuc A, Cascaval D, et al. Cellular stress impact on yeast activity in biotechnological processes – A short overview. 2023;11:2522. DOI: 10.3390/microorganisms11102522. PMID: 37894181.
  32. Abbas KS, Lushnikova ES, Novochadov VV. Assessment of the lactose-converting ability of yeast Kluyveromyces lactis, depending on the concentration of zinc in the cultivation medium. Nat Systems Resources. 2024;14:18-25. DOI: 10.15688/nsr.jvolsu.2024.1.2.
  33. Lip KYF, García-Ríos E, Costa CE, et al. Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae strains during continuous growth at sub- and- supra optimal temperatures. Biotechnol Rep (Amst). 2020;26: DOI: 10.1016/j.btre.2020.e00462. PMID: 32477898.
  34. Buchanan D, Martindale W, Romeih E, et al. Recent advances in whey processing and valorisation: technological and environmental perspectives. Int J Dairy Technol. 2023;76:291-312. DOI: 10.1111/1471-0307.12935.
  35. de Moura Ferreira MA, da Silveira FA, et al. Ethanol stress responses in Kluyveromyces marxianus: Current knowledge and perspectives. Appl Microbiol 2022;106:1341-1353. DOI: 10.1007/s00253-022-11799-0. PMID: 35091763.
  36. Walker GM, Basso TO. Mitigating stress in industrial yeasts. Fungal Biol. 2020;124:387-397. DOI: 10.1016/j.funbio.2019.10.010. PMID: 32389301.
  37. Segal-Kischinevzky C, Romero-Aguilar L, Alcaraz LD, et al. Yeasts inhabiting extreme environments and their biotechnological applications. 2022;10:794. DOI: 10.3390/microorganisms10040794. PMID: 35456844.
  38. Ha-Tran DM, Lai RY, Nguyen TM., et al. Construction of engineered RuBisCO Kluyveromyces marxianus for a dual microbial bioethanol production system.  PLoS One.2021;16:e0247135. DOI: 10.1371/journal.pone.0247135. PMID: 33661900.
  39. Liu B, Wu P, Zhou J, Yi A, et al. Characterization and optimization of the LAC4 upstream region for low-leakage expression in Kluyveromyces marxianus. 2022;39:283-296. DOI:10.1002/yea.3682. PMID: 34791694.